Second Semester M.Tech. Degree Examination, June/July 2016 Synthesis and Optimization of Digital Circuits

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Explain the different microelectronic design styles.

(08 Marks)

b. Explain surjective, injective and bijective functions.

(06 Marks)

c. Define (i) Polar dag (ii) Acyclic graph(v) Indegree & Outdegree.

(iv) Complete graph

(1) magnet & outdegree.

(06 Marks)

2 a. Find the shortest path for the graph shown in Fig. Q2 (a) using Bellman-Ford algorithm.

(10 Marks)

(iii) Cutset

Fig. Q2 (a)

- b. For the function, f = ab + bc + ac, compute the expansion on the orthonormal basis. Given that $\phi_1 = a$, $\phi_2 = a'b$ and $\phi_3 = a'b'$. Consider the lower bound of f_{ϕ_1} in each case. (10 Marks)
- 3 a. Consider the following equations:

$$x_1 = x + dx$$
;

$$U_1 = [U - (3 * x * u * dx) - (3 * y * dx)];$$

$$y_1 = (y + u * dx);$$

$$c = x_1 < a$$
;

$$x = x_1$$
; $u = u_1$, $y = y_1$

Implement in VHDL using behavior style. The input and output port signals are of integer and the range is from 0 to 255. (10 Marks)

- b. Explain tree height reduction, constant propagation, dead code elimination, operator strength reduction and loop expansion. (10 Marks)
- 4 a. For the function f(a,b,c) = a'c' + a'b + bc + ac and $f_2(a,b,c) = bc$, obtain the cover of the function, minimum cover and irredundant cover. Represent the same in Boolean cube.

(10 Marks)

- b. Represent the function, f = ab + ac + ab'c' + a' in positional cube rotation and check the function is tautology or not. (10 Marks)
- 5 a. Find the expanded cover of the function f = a'b'c' + ab'c' + a'bc' + a'bc' with abc' as a don't care condition. (08 Marks)
 - b. Draw the logic network after elimination and decomposition described with primary input variables {a, b, c, d, e} and primary output variables {w, x, y, z} by the combinational equations:

$$p = ce + de$$
; $q = a + b$; $r = p + a'$; $s = r + b'$; $t = ac + ad + bc + bd + e$; $u = q'c + qc' + qc$, $v = a'd + bd + c'd + ae'$, $w = v$, $x = s$, $y = t$, $z = u$. (12 Marks)

6 a. Find the kernel set of f = ace + bce + de + g. Also find its co-kernel.

(10 Marks)

- b. For the expression, f = ace + bce + de + g, write the corresponding matrix representation. Also find the rectangles and its co-rectangles. (10 Marks)
- 7 a. Explain the state encoding for two level circuits using the state table given in table Q7 (a).

(10 Marks)

Input	State	Next state	Output
0	S_1	S_3	0
1	S_1	S_3	0
0	S ₂	S_3	0
1	S_2	S_1	1
0	S_3	S_5	0
1	S_3	S ₄	1
0	S ₄	S_2	1
1	S ₄	S_3	0
0	S_5	S_2	D
1	S_5	S ₅	0

Table Q7 (a)

- b. Explain modeling and assumption for retiming in sequential circuit optimization using network models. (10 Marks)
- 8 a. Explain integer linear programming model of scheduling with resource constraints.

(10 Marks)

b. Briefly explain rule based library binding.

(10 Marks)